SAM PLE PAPER - 98

Time : 1 : 15 Hr .

PHYSICS

1. Two wires of copper have lengths in the ratio 1:2 and radii in the ratio $2: 1$. Their Young's moduli are in the ratio :
(1) $1: 1$
(2) $1: 8$
(3) $8: 1$
(4) $1: 4$
2. Two capacitors C_{1} and C_{2} are charged to 120 V and 200 V respectively. When they are connected in parallel it is found that the potential on each one of them is zero. Therefore
(1) $5 \mathrm{C}_{1}=3 \mathrm{C}_{2}$
(2) $3 \mathrm{C}_{1}=5 \mathrm{C}_{2}$
(3) $3 \mathrm{C}_{1}=5 \mathrm{C}_{2}=0$
(4) $9 \mathrm{C}_{1}=4 \mathrm{C}_{2}$
3. Two capacitors C and 3C are connected as shown in the circuit terminals a and b of the key k are connected to charge capacitor C using battery of emf V volt. Now disconnecting a and b the terminals b and c are connected. Due to this, what will be the percentage loss of energy?

(1) 75%
(2) 0%
(3) 50%
(4) 25%
4. A uniform metal rod of $2 \mathrm{~mm}^{2}$ cross-section is heated from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. The coefficient of the linear expansion of the rod is $12 \times 10^{-6} /{ }^{0} \mathrm{C}$. Its Young's modulus of elasticity is $10^{11} \mathrm{~N} / \mathrm{m}^{2}$. The energy stored per unit volume of the rod is:
(1) $1440 \mathrm{~J} / \mathrm{m}^{3}$
(2) $15760 \mathrm{~J} / \mathrm{m}^{3}$
(3) $1500 \mathrm{~J} / \mathrm{m}^{3}$
(4) $2880 \mathrm{~J} / \mathrm{m}^{3}$
5. The height at which the weight of a body becomes $1 / 4$ th, of its weight on the surface of earth (radius R), is
(1) R
(2) 2 R
(3) 3 R
(4) $4 R$.

Question : 60
06. Which one of the following plots represents the variation of gravitational field on a particle with distance r due to a solid sphere of radius R ? (r is measured from the centre of the sphere.
(1)

(2)

(3)

(4)

07. A body of mass m is placed on earth surface. It is then taken from earth's surface to a height $h=2 R$, then the change in gravitational potential energy is:
(1) $\frac{\mathrm{mgh}}{\mathrm{R}}$
(2) $\frac{2}{3} \mathrm{mgR}$
(3) $\frac{3}{4} \mathrm{mgR}$
(4) $\frac{\mathrm{mgR}}{2}$
08. A body weighs 1400 gram weight on the surface of earth. How much will it weigh on the surface of a planet whose mass is $\frac{2}{7}$ and radius is $\frac{1}{3}$ that of the earth ?
(1) 450 gram
(2) 900 gram
(3) 1800 gram
(4) 3600 gram
09. The gravitational potential at the centre of a square of side a, when four point masses m each are kept at its vertices will be

CHEMISTRY

(1) $4 \sqrt{2} \frac{G m}{a}$
(2) $-4 \sqrt{2} \frac{G m}{a}$
(3) $2 \sqrt{2} \frac{G m}{a}$
(4) $-2 \sqrt{2} \frac{G m}{a}$
10. If compressibility of a material is 4×10^{-5} per atm, pressure is 100 atm and volume is $100 \mathrm{~cm}^{3}$, then find the value of $\Delta \mathrm{V}$
(1) $0.4 \mathrm{~cm}^{3}$
(2) $0.8 \mathrm{~cm}^{3}$
(3) $0.6 \mathrm{~cm}^{3}$
(4) $0.2 \mathrm{~cm}^{3}$
11. The Young's modulus of brass and steel are respectively $1.0 \times 10^{11} \mathrm{Nm}^{-2}$ and $2.0 \times 10^{11} \mathrm{Nm}^{-2}$. A brass wire and a steel wire of the same length are extended by 1 mm each under the same force. If radii of brass and steel wires are R_{B} and R_{S} respectively, then
(1) $R_{S}=\sqrt{2} R_{B}$
(2) $\mathrm{R}_{\mathrm{S}}=\frac{\mathrm{R}_{\mathrm{B}}}{\sqrt{2}}$
(3) $R_{S}=4 R_{B}$
(4) $R_{S}=\frac{R_{B}}{2}$
12. When a weight of 10 kg is suspended from a copper wire of length 3 m and diameter 0.4 mm , its length increases by 2.4 cm . If the diameter of the wire is doubled, then the extension in its length will be
(1) 7.6 cm
(2) 4.8 cm
(3) 1.2 cm
(4) 0.6 cm
13. A stress of $3.18 \times 10^{8} \mathrm{Nm}^{-2}$ is applied to a steel rod of length 1 m along its length, its Young's modulus is $2 \times$ $10^{11} \mathrm{Nm}^{-2}$. Then, the elongation produced in the rod (in mm) is
(1) 3.18
(2) 6.36
(3) 5.18
(4) 1.59
14. A train 200 m long crosses a bridge 300 m long. It enters the bridge with velocity $30 \mathrm{~ms}^{-1}$ and leaves it with velocity $50 \mathrm{~ms}^{-1}$. What is the time taken to cross the bridge ?
(1) 2.5 s
(2) 7.5 s
(3) 12.5 s
(4) 15.0 s
15. A lift is coming from 8th floor and is just about to stop at 4th floor. Taking ground floor as origin and take positive direction upwards for all quantities, which one of the following is correct?
(1) $x<0, v<0, a>0$
(2) $x>0, v<0, a<0$
(3) $x>0, v<0, a>0$
(4) $x>0, v>0, a<0$
16. Which has the highest f.p. at 1 atm ?
(1) 0.1 M NaCl solution
(2) $0.1 \mathrm{M} \mathrm{BaCl}_{2}$ solution
(3) 0.1 M sugar solution
(4) $0.1 \mathrm{M} \mathrm{FeCl}_{3}$ solution
17. An aqueous solution contains 5% and 10% of urea and glucose respectively. (by wt.). If K_{f} for water is 1.86 , the f.p. of the solution is
(1) 3.03 K
(2) $3.03^{\circ} \mathrm{C}$
(3) $-3.03^{\circ} \mathrm{C}$
(4) -3.03 K
18. For the equilibrium $\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$, equilibrium constant may be equal to
(1) $\frac{[\mathrm{C}] \cdot[\mathrm{A}]}{[\mathrm{D}] \cdot[\mathrm{B}]}$
(2) $\frac{[\mathrm{A}] \cdot[\mathrm{B}]}{[\mathrm{C}] \cdot[\mathrm{D}]}$
(3) $\frac{[\mathrm{C}]+[\mathrm{D}]}{[\mathrm{A}]+[\mathrm{B}]}$
(4) all wrong
19. Which of the following is correct ?
(1) K_{p} will always have some unit
(2) K_{c} will always have some unit
(3) K_{x} will never have any unit
(4) When $\Delta \mathrm{n}=0, \mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{x}}$ then all the three Ks have the same unit
20. The oxidation of SO_{2} by O_{2} to SO_{3} is an exothermic reaction. The yield of SO_{3} will be maximum if
(1) temperature is increased and pressure is kept constant
(2) temperature is reduced and pressure is increased
(3) both temperature and pressure are increased
(4) both temperature and pressure are reduced
21. When NaNO_{3} is heated is a closed vessel, O_{2} is liberated and NaNO_{2} is left behind. At equilibrium
(1) addition of NaNO_{2} favours reverse reaction
(2) addition of NaNO_{2} favours forward reaction
(3) Increasing temperature favours forward reaction
(4) increasing pressure favours forward reaction
22. Each of the mixture listed below was placed in a closed container and allowed to stand. Which of the following mixtures is not capable of attaining the equilibrium: $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$?
(1) Pure CaCO_{3}
(2) CaO and a pressure of CO_{2} greater than K_{p}
(3) $\mathrm{Some}^{\mathrm{CaCO}_{3}}$ and a pressure of CO_{2} greater than K_{p}
(4) CaCO_{3} and CaO
23. What is the minimum mass of CaCO_{3}, below which it decomposes completely, required to establish equilibrium in a 6.50 -litre container for the reaction:
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$?
[$\mathrm{K}_{\mathrm{c}}=0.05 \mathrm{~mole} / \mathrm{litre}$]
(1) 32.5 g
(2) 24.6 g
(3) 40.9 g
(4) 8.0 g
24. In a gaseous reaction of the type $\mathrm{a} A+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}$, which is wrong?
(1) a litre of A combines with b litre of B at same P \& T to give C and D
(2) a mole of A combines with b mole of B to give C and D
(3) $a g$ of A combines with $b g$ of B to give C and D
(4) a molecules of A combines with b molecules of B to give C and D
25. In the synthesis of ammonia

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If the quantity of N_{2} reacted is 700 mL , the quantity of H_{2} and NH_{3} would be
(1) $300 \mathrm{mLH}_{2}$ and $200 \mathrm{mLNH}_{3}$
(2) $300 \mathrm{mLH}_{2}$ and $300 \mathrm{~mL} \mathrm{NH}_{3}$
(3) $300 \mathrm{mLH}_{2}$ and $100 \mathrm{~mL} \mathrm{NH}_{3}$
(4) $100 \mathrm{mLH}_{2}$ and $200 \mathrm{~mL} \mathrm{NH}_{3}$
26. The maximum oxidation state of an element of p-block can be:
(1) 8
(2) equal to e^{-}in V.S.
(3) $8-\mathrm{e}^{-}$in V.S.
(4) group number
27. Which is the following is correct for NO_{3}^{-}and PO_{4}^{3-} ?
(1) Both use p-orbital of central atom to form π-bond
(2) Both use d-orbital of central atom to form π-bond
(3) $\mathrm{In}_{\mathrm{NO}}^{3}-\mathrm{N}$-atom uses p-orbital to form π-bond while in $\mathrm{PO}_{4}^{3-}, \mathrm{P}$-atom uses d-orbital to form π-bond
(4) In $\mathrm{NO}_{3}^{-}, \mathrm{N}$-atom uses d-orbital to form π-bond while in $\mathrm{PO}_{4}^{3-}, \mathrm{P}$-atom uses p -orbital to form π-bond
28. Hex-1-ene reacts with HBr in the absence of peroxide to give ' A ' and in the presence of peroxide to give ' B '. What are ' A ' and ' B '?
(1) A-1-Bromohexane; B-2-Bromohexane
(2) A-2-Bromohexane; B-1-Bromohexane
(3) A-1-Bromohexane; B-1-Bromohexane
(4) A-2-Bromohexane; B-2-Bromohexane
29. Which of the following is the most stable shape?
(I)

(III)

(1) I
(2) II
(3) III
(4) All equal
30. Which of $\mathrm{Ne}_{2}, \mathrm{O}_{2}, \mathrm{C}_{2}$ and Li_{2} has/have double bond?
(1) Ne_{2}
(2) O_{2} and C_{2} both
(3) Li_{2}
(4) Li_{2} and Ne_{2} both

BOTANY

31. Zinc is essential for
(1) Stomatal closing
(2) Stomatal opening
(3) Biosynthesis of IAA
(4) Oxidation of carbohydrates
32. Which one is not a micronutrient
(1) Mo
(2) B
(3) K
(4) Zn
33. Nitrogen fixing symbiotic bacteria present in a legume root is
(1) Azotobacter
(2) Rhizobium
(3) Nitrobacter
(4) Nitrosomonas
34. Inorganic nutrients are present in the soil as
(1) Molecules
(2) Atoms
(3) Electrically charged ions
(4) Colloids
35. Energy contained in plant carbohydrates comes from
(1) Minerals
(2) CO_{2}
(3) Proteins
(4) Sunlight
36. If plants stop photosynthesis which gas will disappear
(1) CO_{2}
(2) N_{2}
(3) O_{2}
(4) NH_{3}
37. Energy required for ATP synthesis in PSII comes from
(1) Proton gradient
(2) Electron gradient
(3) Reduction of glucose
(4) Oxidation of glucose
38. Kreb's cycle starts with the formation of six carbon compound by reaction between
(1) Malic acid and acetyl CoA
(2) Succinic acid and pyruvic acid
(3) Fumaric acid and pyruvic acid
(4) Oxalo-acetic acid and acetyl CoA
39. The net gain of energy from one gram mole of glucose during aerobic respiration is
(1) 2 ATP
(2) 4 ATP
(3) 38 ATP
(4) 40 ATP
40. 1 molecule of NADH gives rise to -__ molecules of ATP, while 1 molecule of FADH_{2} gives —_ molecule of ATP
(1) 3,2
(2) 2,3
(3) 2,2
(4) 3,3
41. What indicated $\mathrm{A}-\mathrm{F}$ in the given figure?

(1) A-Oxaloacetic acid (4C), B-Malic acid (4C), CSuccinic acid (4C), D-Acetyl coenzyme A (2C), E-Citric acid (6C), F- α-ketoglutaric acid
(2) $\mathrm{A}-\alpha$-ketoglutaric acid, $\mathrm{B}-\mathrm{Citric}$ acid (6C), C:Oxaloacetic acid (4C), D-Succinic acid (4C), E-Acetyl coenzyme A (2C), F-Malic acid (4C)
(3) A-Acetyl coenzyme A (2C), B-Oxaloacetic acid (4C), C-Citric acid (6C), D-Malic acid (4C), E- α-ketoglutaric acid, F-Succinic acid (4C)
(4) A-Succinic acid (4C), B-Acetyl coenzyme A (2C), CMalic acid, D- α-ketoglutaric acid, E-Citric acid (6C), F-Oxaloacetic acid (4C)
42. What is the correct order of the stages during aerobic respiration?
(1) Kreb's cycle — Electron transport chain - Glycolysis
(2) Electron transport chain - Krebs' cycle - Glycolysis
(3) Glycolysis - Krebs' cycle - Electron transport chain
(4) Glycolysis — Electron transport chain - Krebs' cycle
43. The enzyme responsible for oxidative decarboxylation of pyruvate to acetyl $\mathrm{Co}-\mathrm{A}$ is
(1) Hexokinase
(2) Succinic dehydrogenase
(3) Pyruvate dehydrogenase
(4) RuBP carboxylase / oxygenase
44. The period from birth to the natural death of an organism represents its:
(1) Juvenile phase
(2) Life span
(3) Vegetative phase
(4) None of these
45. In Protists and Monerans, mode of reproduction is:
(1) Binary fission
(2) Fragmentation
(3) Buds
(4) Zoospores
(3) Pars distalis
(4) Pars nervosa
46. Alcohol inhibits the secretion of:
(1) ADH
(2) Insulin
(3) Oxytocin
(4) Progesterone
47. A woman started developing male characters. It may be due to:
(1) Damage to posterior pituitary
(2) Damage to mammary glands
(3) Over production of estrogens
(4) Over production of adrenal androgens
48. Thymus in mammals is mainly concerned with:
(1) Regulation of body growth
(2) Secretion of thyrotropin
(3) Regulation of body temperature
(4) Immunological functions
49. If ovaries of a lady are removed in fourth month of pregnancy, the result will be:
(1) Embryo will develop normally till birth
(2) Abortion will occur after sometime
(3) Development of embryo becomes abnormal
(4) None of the above
50. Hormone that causes the milk ejection from the breast when the baby begins to suckle is called:
(1) Prolactin
(2) Oxytocin
(3) Progesterone
(4) Estrogen
51. The hypofunction of β-cells of Islets of Langerhans results in :
(1) hypoglycaemia and glycosuria
(2) hyperglycaemia and glycosuria
(3) hyper insulinisms and uraemia
(4) hyperglycaemia and diabetes mellitus
52. Down syndrome is due to:
(1) chromosome number increase in 18th pair of autosomes
(2) chromosome number increase in 21st pair of autosomes
(3) chromosome number decrease in 21 st pair of autosomes
(4) chromosome number decrease in 18th pair of autosomes
53. Any change in sex chromosome constitution is not involved in:
(1) Supermale
(2) Superfemale
(3) Turner syndrome
(4) Down syndrome
54. 'Webbed neck' is a characteristic ot:
(1) XO
(2) XXX
(3) XY
(4) XXY
55. In case of haemophilia, if the carrier daughter (Hh) marries a normal man 'H', then among their daughters:
(1) 50% will be normal and 50% carrier.
(2) 50% will be normal and 50% haemophilic
(3) 50% will be carrier and 50% haemophilic
(4) 25% will be carrier and 75% haemophilic
56. In sickle-cell anaemia, which of the following amino acids is substituted?
(1) Glutamic acid by valine in β chain
(2) Valine by glutamic acid in β chain
(3) Glutamic acid by valine in α chain
(4) Valine by glutamic acid in α chain
57. Which of the following enzyme is known as molecular scissors?
(1) Ligase
(2) DNA polymerase
(3) Restriction enzyme
(4) Helicase
58. When does first recombinant DNA was developed?
(1) 1962
(2) 1972
(3) 1982
(4) 1992
59. The procedure through which a piece of DNA is introduced in a host bacterium is called
(1) Cloning
(2) Transformation
(3) PCR
(4) Clonal selection
