

Time : 1 : 15 Hr.

PHYSICS

- 01. Two wires of copper have lengths in the ratio 1: 2 and radii in the ratio 2 : 1. Their Young's moduli are in the ratio :
 (1) 1 : 1 (2) 1 : 8 (3) 8 : 1 (4) 1 : 4
- 02. Two capacitors C_1 and C_2 are charged to 120 V and 200 V respectively. When they are connected in parallel it is found that the potential on each one of them is zero. Therefore
 - (1) $5 C_1 = 3 C_2$ (3) $3 C_1 = 5 C_2 = 0$ (2) $3 C_1 = 5 C_2$ (4) $9 C_1 = 4 C_2$
- 03. Two capacitors C and 3C are connected as shown in the circuit terminals a and b of the key k are connected to charge capacitor C using battery of emf V volt. Now disconnecting a and b the terminals b and c are connected. Due to this, what will be the percentage loss of energy?

04. A uniform metal rod of 2 mm^2 cross-section is heated from 0°C to 20°C. The coefficient of the linear expansion of the rod is 12×10^{-6} °C. Its Young's modulus of elasticity is 10^{11} N/m^2 . The energy stored per unit volume of the rod is:

(1) 1440J/m^3	(2) 15760J/m^3
(3) 1500J/m^3	(4) 2880 J/m^3

05. The height at which the weight of a body becomes 1/4th, of its weight on the surface of earth (radius R), is (1) R (2) 2 R (3) 3 R (4) 4 R.

Question: 60

06. Which one of the following plots represents the variation of gravitational field on a particle with distance r due to a solid sphere of radius R? (r is measured from the centre of the sphere.

07. A body of mass m is placed on earth surface. It is then taken from earth's surface to a height h = 2R, then the change in gravitational potential energy is:

$$(1)\frac{\text{mgh}}{R} \qquad (2)\frac{2}{3}\text{mgR}$$

- $(3)\frac{3}{4}\mathrm{mgR} \qquad (4)\frac{\mathrm{mgR}}{2}$
- 08. A body weighs 1400 gram weight on the surface of earth. How much will it weigh on the surface of a planet whose

mass is $\frac{2}{7}$ and radius is	$\frac{1}{3}$ that of the earth ?
(1) 450 gram	(2) 900 gram
(3) 1800 gram	(4) 3600 gram

- 09. The gravitational potential at the centre of a square of side a, when four point masses m each are kept at its vertices will be
 - (1) $4\sqrt{2} \frac{\text{Gm}}{\text{a}}$ (2) $-4\sqrt{2} \frac{\text{Gm}}{\text{a}}$ (3) $2\sqrt{2} \frac{\text{Gm}}{\text{a}}$ (4) $-2\sqrt{2} \frac{\text{Gm}}{\text{a}}$
- 10. If compressibility of a material is 4×10^{-5} per atm, pressure is 100 atm and volume is 100 cm³, then find the value of ΔV

$(1) 0.4 \mathrm{cm}^3$	$(2)0.8\mathrm{cm}^3$
$(3) 0.6 \mathrm{cm}^3$	$(4) 0.2 \mathrm{cm}^3$

11. The Young's modulus of brass and steel are respectively 1.0×10^{11} Nm⁻² and 2.0×10^{11} Nm⁻². A brass wire and a steel wire of the same length are extended by 1 mm each under the same force. If radii of brass and steel wires are R_B and R_S respectively, then

(1)
$$R_{S} = \sqrt{2} R_{B}$$
 (2) $R_{S} = \frac{R_{B}}{\sqrt{2}}$
(3) $R_{S} = 4R_{B}$ (4) $R_{S} = \frac{R_{B}}{2}$

- 12. When a weight of 10 kg is suspended from a copper wire of length 3 m and diameter 0.4 mm, its length increases by 2.4 cm. If the diameter of the wire is doubled, then the extension in its length will be
 (1) 7.6 cm
 (2) 4.8 cm
 (3) 1.2 cm
 (4) 0.6 cm
- 13. A stress of 3.18 × 10⁸ Nm⁻² is applied to a steel rod of length 1 m along its length, its Young's modulus is 2 × 10¹¹ Nm⁻². Then, the elongation produced in the rod (in mm) is

 (1) 3.18
 (2) 6.36
 (3) 5.18
 (4) 1.59
- 14. A train 200 m long crosses a bridge 300 m long. It enters the bridge with velocity 30 ms^{-1} and leaves it with velocity 50 ms^{-1} . What is the time taken to cross the bridge ? (1) 2.5 s (2) 7.5 s (3) 12.5 s (4) 15.0 s
- 15. A lift is coming from 8th floor and is just about to stop at 4th floor. Taking ground floor as origin and take positive direction upwards for all quantities, which one of the following is correct?

(1) x < 0, v < 0, a > 0(2) x > 0, v < 0, a < 0(3) x > 0, v < 0, a > 0(4) x > 0, v > 0, a < 0

CHEMISTRY

- 16. Which has the highest f.p. at 1 atm? (1) 0.1 M NaCl solution (2) 0.1 M BaCl₂ solution (3) 0.1 M sugar solution (4) 0.1 M FeCl₃ solution
- 17. An aqueous solution contains 5% and 10% of urea and glucose respectively. (by wt.). If K_f for water is 1.86, the f.p. of the solution is

(1) 3.03 K	(2) 3.03°C
(3)−3.03°C	(4)-3.03 K

18. For the equilibrium $A + B \rightleftharpoons C + D$, equilibrium constant may be equal to

19. Which of the following is correct ?

(1) K_p will always have some unit
(2) K_c will always have some unit
(3) K_x will never have any unit

(4) When $\Delta n = 0$, $K_p = K_c = K_x$ then all the three Ks have the same unit

- 20. The oxidation of SO₂ by O₂ to SO₃ is an exothermic reaction. The yield of SO₃ will be maximum if
 (1) temperature is increased and pressure is kept constant
 (2) temperature is reduced and pressure is increased
 (3) both temperature and pressure are increased
 (4) both temperature and pressure are reduced
- 21. When NaNO₃ is heated is a closed vessel, O₂ is liberated and NaNO₂ is left behind. At equilibrium
 (1) addition of NaNO₂ favours reverse reaction
 (2) addition of NaNO₂ favours forward reaction
 (3) Increasing temperature favours forward reaction
 (4) increasing pressure favours forward reaction
- - (4) $CaCO_3$ and CaO

23. What is the minimum mass of CaCO₃, below which it decomposes completely, required to establish equilibrium in a 6.50-litre container for the reaction:

$CaCO_3(s) \rightleftharpoons 0$	$CaO(s) + CO_2(g)?$
$[K_c = 0.05 \text{ mole/lit}]$	tre]
(1) 32.5 g	(2) 24.6 g
(3)40.9 g	(4) 8.0 g

- 24. In a gaseous reaction of the type aA + bB → cC + dD, which is wrong?
 (1) a litre of A combines with b litre of B at same P & T to give C and D
 (2) a mole of A combines with b mole of B to give C and D
 (3) a g of A combines with b g of B to give C and D
 (4) a molecules of A combines with b molecules of B to give C and D
- 25. In the synthesis of ammonia $N_2(g) + 3H_2 \Longrightarrow 2NH_3(g)$ If the quantity of N_2 reacted is 700 mL, the quantity of H_2 and NH_3 would be (1) 300 mL H_2 and 200 mL NH_3 (2) 300 mL H_2 and 300 mL NH_3 (3) 300 mL H_2 and 100 mL NH_3 (4) 100 mL H_2 and 200 mL NH_3
- 26. The maximum oxidation state of an element of p-block can be:
 (1)8 (2) equal to e⁻ in V.S.

(3) 8– e^{-} in V.S.	(4) group number	

- 27. Which is the following is correct for NO_3^- and PO_4^{3-} ? (1) Both use p-orbital of central atom to form π -bond (2) Both use d-orbital of central atom to form π -bond (3) In NO_3^- , N-atom uses p-orbital to form π -bond while in PO_4^{3-} , P-atom uses d-orbital to form π -bond (4) In NO_3^- , N-atom uses d-orbital to form π -bond while in PO_4^{3-} , P-atom uses p-orbital to form π -bond
- 28. Hex-1-ene reacts with HBr in the absence of peroxide to give 'A' and in the presence of peroxide to give 'B'. What are 'A' and 'B'?
 (1) A–1-Bromohexane; B–2-Bromohexane
 (2) A–2-Bromohexane; B–1-Bromohexane
 - (3) A–1-Bromohexane; B–1-Bromohexane
 - (4) A-2-Bromohexane; B-2-Bromohexane
- 29. Which of the following is the most stable shape?

- 30. Which of Ne₂, O_2 , C_2 and Li₂ has/have double bond? (1) Ne₂ (2) O_2 and C_2 both (3) Li₂ (4) Li₂ and Ne₂ both
- BOTANY 31. Zinc is essential for (1) Stomatal closing (2) Stomatal opening (3) Biosynthesis of IAA (4) Oxidation of carbohydrates 32. Which one is not a micronutrient (1) Mo (2)B(3) K (4) Zn 33. Nitrogen fixing symbiotic bacteria present in a legume root is (1) Azotobacter (2) Rhizobium (3) Nitrobacter (4) Nitrosomonas 34. Inorganic nutrients are present in the soil as (1) Molecules (2) Atoms (3) Electrically charged ions (4) Colloids 35. Energy contained in plant carbohydrates comes from (1) Minerals $(2)CO_{2}$ (3) Proteins (4) Sunlight 36. If plants stop photosynthesis which gas will disappear $(1)CO_{2}$ $(2) N_2$ $(3) O_2$ $(4) \mathrm{NH}_3$ 37. Energy required for ATP synthesis in PSII comes from (1) Proton gradient (2) Electron gradient (3) Reduction of glucose (4) Oxidation of glucose 38. Kreb's cycle starts with the formation of six carbon compound by reaction between (1) Malic acid and acetyl CoA (2) Succinic acid and pyruvic acid (3) Fumaric acid and pyruvic acid (4) Oxalo-acetic acid and acetyl CoA 39. The net gain of energy from one gram mole of glucose during aerobic respiration is (1) 2 ATP(2) 4 ATP (3) 38 ATP (4) 40 ATP 40. 1 molecule of NADH gives rise to ——— molecules of ATP, while 1 molecule of FADH₂ gives — molecule of ATP (1)3,2(2)2,3(3)2,2(4)3,3

3

(4) Pars nervosa (3C)	
47 Alashal inhibits the secretion of	
\bullet 47. Alcohol minutes the secretion of:	
(1)ADH	
A (2) Insulin	
(3) Oxytocin	
(4) Progesterone	
NAD^{+} 48. A woman started developing male character	ers. It may be
Citric acid cycle	
D (1) Damage to posterior pituitary	
(2) Damage to manimally grands NAD ⁺ (3) Over production of estrogens	
FADH ₂ (3) Over production of estrogens	
FAD F	
49. Thymus in mammals is mainly concerned y	with:
(1) A–Oxaloacetic acid (4C), B–Malic acid (4C), C– (1) Regulation of body growth	
Succinic acid (4C), D–Acetyl coenzyme A (2C), E-Citric (2) Secretion of thyrotropin	
acid (6C), $F-\alpha$ -ketoglutaric acid (3) Regulation of body temperature	
(2) $A-\alpha$ -ketoglutaric acid, B-Citric acid (6C), (4) Immunological functions	
C:Oxaloacetic acid (4C), D–Succinic acid (4C), E–Acetyl	
coenzyme A (2C), F–Malic acid (4C) 50. If ovaries of a lady are removed in four	rth month of
(3) A–Acetyl coenzyme A (2C), B–Oxaloacetic acid (4C), pregnancy, the result will be:	
C-Citric acid (6C), D-Malic acid (4C), E- α -ketoglutaric (1) Embryo will develop normally till birth	
acid, F–Succinic acid (4C) (2) Abortion will occur after sometime (3) A f	
(4) A–Succinic acid (4C), B–Acetyl coenzyme A (2C), C– (3) Development of embryo becomes abnor	rmal
Malic acid, $D-\alpha$ -ketoglutaric acid, E-Citric acid (6C), (4) None of the above	
F-Oxalloacetic actu (4C)	m the breast
42 What is the correct order of the stages during aerobic when the baby begins to suckle is called:	Jii the breast
respiration?	
(1) Kreb's cycle — Electron transport chain — Glycolysis (2) Oxytocin	
(2) Electron transport chain — Krebs' cycle — Glycolysis (3) Progesterone	
(3) Glycolysis — Krebs' cycle — Electron transport chain (4) Estrogen	
(4) Glycolysis — Electron transport chain — Krebs' cycle	
52. The hypofunction of β -cells of Islets of	Langerhans
43. The enzyme responsible for oxidative decarboxylation of results in :	
pyruvate to acetyl Co–A is (1) hypoglycaemia and glycosuria	
(1) Hexokinase (2) hyperglycaemia and glycosuria	
(2) Succinic dehydrogenase (3) hyper insulinisms and uraemia	
(3) Pyruvate denydrogenase (4) hyperglycaemia and diabetes mellitus	
(4) Kubr carboxyrase / 0xygerrase	
M The period from birth to the natural death of an organism (1) chromosome number increase in	18th pair of
represents its:	
(1) Juvenile phase (2) Life span (2) chromosome number increase in	21st pair of
(3) Vegetative phase (4) None of these autosomes	F
(3) chromosome number decrease in	21st pair of
45. In Protists and Monerans, mode of reproduction is: autosomes	-
(1) Binary fission (2) Fragmentation (4) chromosome number decrease in	18th pair of
(3) Buds (4) Zoospores autosomes	
	44 ¹
70010CV	iution is not
AUULUGY Involved III:	
46 MSH is secreted by: (1) Superfinate	
(1) Pars intermedia (3) Turner syndrome	
(2) Pars tuberalis (4) Down syndrome	

4 Sample Paper-98 SKD NEW STANDARD COACHING INSTITUTE

www.neetlive.co.in

\$ 7080111582

- 55. `Webbed neck' is a characteristic ot: (1) XO (2) XXX (3) XY (4) XXY
- 56. In case of haemophilia, if the carrier daughter (Hh) marries a normal man 'H', then among their daughters:
 (1) 50% will be normal and 50% carrier.
 (2) 50% will be normal and 50% haemophilic
 - (3) 50% will be carrier and 50% haemophilic
 - (4) 25% will be carrier and 75% haemophilic
- 57. In sickle-cell anaemia, which of the following amino acids is substituted?
 - (1) Glutamic acid by valine in β chain
 - (2) Valine by glutamic acid in β chain
 - (3) Glutamic acid by valine in α chain
 - (4) Valine by glutamic acid in α chain

- 58. Which of the following enzyme is known as molecular scissors?
 - (1) Ligase(2) DNA polymerase(3) Restriction enzyme(4) Helicase
- 59. When does first recombinant DNA was developed?(1) 1962 (2) 1972 (3) 1982 (4) 1992
- 60. The procedure through which a piece of DNA is introduced in a host bacterium is called
 (1) Cloning (2) Transformation
 (3) PCR (4) Clonal selection

Ś

200